Researchers at the John Innes Center and the Earlham Institute are pioneering powerful single-cell visualization techniques ...
Single-cell RNA transcriptomics allows researchers to broadly profile the gene expression of individual cells in a particular tissue. This technique has allowed researchers to identify new subsets of ...
Spatial transcriptomics and gene expression analysis represent a transformative approach in biomedical research, integrating the spatial context of tissues with high-resolution profiling of gene ...
PALO ALTO, Calif.--(BUSINESS WIRE)--Curio Bioscience today announced it has commenced commercial operations with the launch of Curio Seeker, the world’s first high-resolution, whole-transcriptome ...
Researchers at the John Innes Centre and the Earlham Institute are pioneering powerful single-cell visualisation techniques ...
Biological tissues are made up of different cell types arranged in specific patterns, which are essential to their proper functioning. Understanding these spatial arrangements is important when ...
This figure shows how the STAIG framework can successfully identify spatial domains by integrating image processing and contrastive learning to analyze spatial transcriptomics data effectively.
Biological systems are inherently three-dimensional—tissues form intricate layers, networks, and architectures where cells interact in ways that extend far beyond a flat plane. To capture the true ...
Conventional transcriptomic techniques have revealed much about gene expression at the population and single-cell level—but they overlook one crucial factor: spatial context. In musculoskeletal ...
Researchers developed two computational tools to decode how cells communicate in tissues. sCCIgen creates realistic virtual ...
Exploring biology in its native environment is perhaps the ideal scenario for generating better hypotheses about the cellular interactions that influence—and drive—healthy and diseased states, ...